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Summary

An altered expression pattern of adhesion molecules (AM) on the surface of
immune cells is a premise for their extravasation into the central nervous
system (CNS) and the formation of acute brain lesions in multiple sclerosis
(MS). We evaluated the impact of glatiramer acetate (GA) on cell-bound and
soluble AM in the peripheral blood of patients with relapsing–remitting MS
(RRMS). Fifteen patients treated de novo with GA were studied on four occa-
sions over a period of 12 months. Surface levels of intracellular cell adhesion
molecule (ICAM)-1, ICAM-3, lymphocyte function-associated antigen
(LFA)-1 and very late activation antigen (VLA)-4 were assessed in T cells
(CD3+CD8+, CD3+CD4+), B cells, natural killer (NK) cells, natural killer T
cells (NK T) and monocytes by five-colour flow cytometry. Soluble
E-selectin, ICAM-1, ICAM-3, platelet endothelial cell adhesion molecule
(PECAM)-1, P-selectin and vascular cell adhesion molecule (VCAM)-1 were
determined with a fluorescent bead-based immunoassay. The pro-migratory
pattern in RRMS was verified by comparison with healthy controls and was
characterized by up-regulation of LFA-1 (CD3+CD4+ T cells, B cells), VLA-4
(CD3+CD8+ T cells, NK cells), ICAM-1 (B cells) and ICAM-3 (NK cells).
Effects of GA treatment were most pronounced after 6 months and included
attenuated levels of LFA-1 (CD3+CD4+) and VLA-4 (CD3+CD4+, CD3+CD8+,
NK, NK T, monocytes). Further effects included lowering of ICAM-1 and
ICAM-3 levels in almost all immune cell subsets. Soluble AM levels in RRMS
did not differ from healthy controls and remained unaltered after GA treat-
ment. The deregulated pro-migratory expression profile of cell-bound AM is
altered by GA treatment. While this alteration may contribute to the benefi-
cial action of the drug, the protracted development and unselective changes
indicate more secondary immune regulatory phenomena related to these
effects.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory disorder
of the central nervous system (CNS) which is believed to
result from environmental exposure in genetically suscepti-
ble individuals [1]. Recent studies have attributed impaired
suppressive activity of regulatory T cells (Tregs) and subse-
quent expansion of myelin-reactive T helper type 1 (Th1)
and Th17 cells in the pathogenesis of the disease [2].

Trafficking of immune cells from the systemic compart-
ment across the blood–cerebrospinal fluid (CSF) barrier or
the blood–brain barrier (BBB) is a critical step in the patho-
genesis of the disease. The neuropathological correlates in
relapsing–remitting MS (RRMS) are recurrent episodes of
focal myelin degradation, followed by complete or partial
remyelination [3].

Glatiramer acetate (GA, Copaxone®) is a synthetic,
random co-polymer used widely as a first-line agent for
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the treatment of RRMS. The agent was developed initially
to mimic a major component of the myelin sheet, but
unexpectedly inhibited development of disease in experi-
mental allergic encephalomyelitis (EAE), an animal model
of MS. Randomized controlled clinical trials confirmed the
clinical efficacy of GA in RRMS comparable to the other
first-line substance, interferon (IFN)-b [4]. The corre-
sponding effects on neuroimaging include a lower size and
frequency of Gadolinium-enhancing lesions [5,6]. The
action of GA had been attributed initially to competition
for binding to major histocompatibility complex type II
molecules on the surface of antigen-presenting cells with
other putative antigens, and subsequent reduced activation
of encephalitogenic T cells [7]. Further immunomodula-
tory actions include preferential differentiation of CD4+ T
cells into anti-inflammatory Th2 phenotype, increased fre-
quency and function of CD25+forkhead box protein 3
(FoxP3)+ Tregs, modulation of CD8+ T cells and expansion
of regulatory type II monocytes [7]. Several reports have
demonstrated that lymphocytes from patients with
RRMS have increased migratory properties. This pro-
migratory capacity was shown to depend upon the
up-regulation of chemokine receptors, secretion of matrix-
metalloproteinases and binding of leucocyte integrins to
their endothelial ligands. The adhesion molecules (AM)
implicated in MS are very late activation antigen-4
(VLA-4) (a4b1, CD49d/CD29) of the b1 integrin family
and the b2 integrin lymphocyte function-associated
antigen-1(LFA-1) (aLb2, CD11a/CD18) on immune cells
and their ligands, vascular cell adhesion molecule-1
(VCAM-1, CD106) and intercellular cell adhesion
molecule-1 (ICAM-1, CD54) [8]. Histopathological studies
have revealed that endothelial ICAM-1 and VCAM-1 and
their respective ligands LFA-1 and VLA-4 on infiltrating
immune cells are up-regulated in acute MS lesions [9].
Patients with MS have at least a 1·5 to threefold higher
expression of VLA-4 and LFA-1 on the surface of periph-
eral blood mononuclear cells (PBMC) [10]. Some of the
mechanisms of action of GA apparently interfere with leu-
cocyte transmigration. Prat and co-workers, for instance,
reported that immune cells derived from IFN-b or
GA-treated patients with RRMS had lower migratory
capacity compared to untreated patients [11]. Moreover,
the impact of supernatants from GA-reactive Th2-
polarized T cells on expression levels of endothelial AM
was less pronounced compared to GA-reactive Th0/Th1
polarized T cells [12]. Previous studies focused mainly on
the characterization of AM on the surface of T cells, B
cells and monocytes. Natural killer (NK) cells and natural
killer T cells (NK T) are lymphocyte subsets but, like
monocytes, are players of the innate immune system and
implicated in cancer, infection and autoimmunity [13,14].
Soluble forms of AM gained attention not only as markers
of endothelial activation; elevated serum levels of sICAM-1
and sVCAM-1 were shown to be associated with BBB

disruption and correlated with clinical and magnetic reso-
nance imaging (MRI) activity [15,16]. Notably, soluble
P-selectin, soluble platelet endothelial cell adhesion mol-
ecule (sPECAM)-1 and soluble E-selectin have been
proposed as surrogate markers of disease activity in
RRMS [17].

The purpose of this study was to investigate the impact of
GA treatment on cell-bound AM of selected PBMC subsets
representative of both innate and adaptive immunity from
RRMS patients. In a second series of experiments we
assessed whether or not treatment with GA alters soluble
AM levels in serum of patients with RRMS.

Material and methods

Patients

The study was approved by the local ethics committee
(Ethikkommission Bundesland Salzburg 415-E/984/2-2008)
and all patients gave written consent. Patients with clinically
definite RRMS based on the McDonald criteria of 2005 [18]
and assigned de-novo to GA treatment were recruited
[n = 15, 12 female, mean age 41·1 years, standard deviation
(s.d.) 6·2]. The minimum interval from the last relapse to
the initiation of GA treatment was 4 weeks. Adults with no
signs or symptoms of an immunological or inflammatory
illness constituted the group of healthy controls (HC,
n = 19, 13 female, mean age 44·8 years, s.d. 12·7).

Sample collection and preparation

Peripheral venous blood was collected in PBMC enrich-
ment (Becton Dickinson AG, Basel, Switzerland) or serum
gel blood collection tubes (Sarstedt AG, Nümbrecht,
Germany) at predefined time-points [before initiation of
GA treatment and after 1·5 (n = 14), 6 (n = 13), 9 (n = 12)
and 12 months (n = 9)]. PBMC enrichment was performed
as described recently [19]. For the study of soluble AM,
serum was collected after centrifugation at 2000 g for
10 min. Aliquots were stored at -20°C until further
processing.

Determination of cell-bound AM on immune
cell subsets

Surface levels of ICAM-1 [RR1/1, fluorescein isothiocy-
anate (FITC); eBioscience, Vienna, Austria], ICAM-3
(CBR-IC3/1, FITC; eBioscience), CD11a/LFA-1 (25·3,
FITC; alpha-L subunit of LFA-1) and CD49d/VLA-4
(clone HP2/1, FITC; alpha-4 subunit of VLA-4) on seven
immune cell subsets [CD3+ T cells (clone UCTH1, ECD),
CD3+CD4+ T cells (SFCI12t4D11, PC7), CD3+CD8+

T cells (B9·11, PC5), CD19+ B cells (J4·119, PC7), CD14+

monocytes (RMO52, PC5), CD56+CD16+ NK cells (clones
NKH-1 and 3G8, both phycoerythrin (PE)] and
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CD56+CD16+CD3+ NK T cells expressed as relative fluores-
cence intensities (RFI) were analysed by five-colour flow
cytometry (Cytometrics FC500; Beckman Coulter, Vienna,
Austria), as described recently [19]. For improved
inter- and intra-individual comparability, RFI levels were
calculated from median fluorescence intensities (MFI) of
the single immune cell subpopulations by correcting them
for the MFI of negative isotype-matched antibodies
[immunoglobulin (Ig)G1-FITC/PE (clone ZX-3, Exalpha,
Watertown, MA, USA), IgG-ECD/PC5/PC7 (clone
679·1Mc7)] and relating them to the RFI of the positive
controls [CD45-FITC/PE/ECD/PC5/PC7 (clone J33)] [20].
The calculation was as follows: MFI (test sample) - MFI
(isotype control)/MFI (positive control) - MFI (isotype
control) ¥ 1000 (annotation: multiplication by 1000 in ref-
erence to the log scale). Unless specified otherwise, all anti-
bodies were obtained from Beckman Coulter.

Determination of soluble AM

The human adhesion 6plex FlowCytomix Multiplex kit
(eBioscience) was used for measuring serum concentrations
of soluble AM [E-selectin (endothelial leucocyte adhesion
molecule-1, ELAM-1), sICAM-1, sICAM-3, sPECAM-1
(CD31), P-selectin (CD62P, GMP-140) and sVCAM-1
(CD106)], according to the manufacturer’s instructions.
The prespecified detection limits were as follows (in ng/ml):
sICAM-1 (5·3), SE-selectin (1·2), sICAM-3 (4·8),
sPECAM-1 (0·8), sVCAM-1 (0·2) and sP-selectin (5·7).

Statistics

The GraphPad Prism version 5·0 program (GraphPad Prism
Software Inc., San Diego, CA, USA) was used for statistics
and preparation of graphs. As none of the data sets were
distributed normally, non-parametric tests were used for all
analyses. A P-value � 0·05 was considered to represent a
statistically significant difference.

Results

Surface expression of AM in RRMS and HC

The four cell-bound AM (ICAM-1, ICAM-3, LFA-1, and
VLA-4) were detected on all seven investigated immune cell
subsets, although at different levels. To substantiate the pro-
posed disease-related deregulation of AM expression pat-
terns in MS, we compared AM levels of immune cells from
HC (n = 19) with those from treatment-naive MS patients
(n = 15, Fig. 1). In MS patients, ICAM-1 levels were
increased significantly on the surface of B cells (P < 0·05),
ICAM-3 on NK cells (P < 0·01), LFA-1 (P < 0·01) on CD4+

T cells [which was also reflected in the CD3+ T cell popula-
tion, both (P < 0·01)] and on B cells (P < 0·05). VLA-4 levels
increased significantly on the surface of CD8+ T cells

(P < 0·05) and CD19+ B cells (P < 0·05). No differences in
AM expression levels were observed on NK T cells or
monocytes from MS patients and HC.

Effects of GA on AM expression levels in RRMS

To determine the potential impact of GA therapy on cell-
bound AM, the surface expression of ICAM-1, ICAM-3,
LFA-1 and VLA-4 were studied on the immune cell subsets
at different time-points (1·5, 6, 9 and 12 months from treat-
ment initiation) during a period of 12 months and related
to baseline levels (Fig. 2). A decrease in the expression levels
of ICAM-3 was found on all immune cell subsets following
treatment with GA. Similar results were observed for
ICAM-1 with GA treatment, with B cells, CD8+ T cells
and monocytes being the only exceptions. ICAM-1 expres-
sion was unaltered on B cells over the entire observation
period. In contrast, ICAM-1 even increased on monocytes
and CD8+ T cell after 9 and 12 months of treatment,
respectively.

The time-point for the observed decreases in AM expres-
sion differed among the immune cell subsets but persisted
until the end of the observation period (9–12 months).
Detailed analysis revealed early (at the 1·5-month examina-
tion) and late (after >6 months) effects. ICAM-3 surface
levels, for example, were decreased early in the course on
CD4+ and CD8+ T cells, NK T cells and monocytes. In con-
trast, decreases in ICAM-1 on CD4+ T cells were seen after 6
months of treatment, and 12 months on NK and NK T
cells. We observed an early decrease in VLA-4 expression
levels on CD4+ T cells and a later effect with decreased levels
after 6 months on CD8+ T cells, NK cells and monocytes,
and after 12 months on NK T cells. VLA-4 expression on
the surface of B cells remained unaltered during GA treat-
ment. LFA-1 surface levels were found to be decreased on
only CD4+ T cells after 9 months of treatment with GA, and
unchanged in other immune cell subsets.

Soluble AM in RRMS and HC

Six soluble AM (sE-selectin, sICAM-1, sICAM-3,
sPECAM-1, sP-selectin and sVCAM-1) were investigated; all
had detectable levels in the serum of patients with MS
(n = 15) and healthy controls (n = 19). The medians (range)
in MS patients and HC were as follows (in ng/ml):
sE-selectin [128·8 (54·8, 196·4); 125·8 (34·0, 274·8)],
sICAM-1 [490·3 (300·5, 1419·0); 542·2 (388·4, 1833·0)],
sICAM-3 [73·7 (12·7, 130·9); 82·2 (43·4, 133·9)], sPECAM-1
[164·0 (115·7, 215·1); 159·1 (120·4, 276·1)], sP-selectin
[651·6 (262·7, 1114·0); 668·1 (209·1, 1022·0)] and sVCAM-1
[599·0 (473·1, 1707·0); 708·1 (414·7, 2161·0)]. Statistical
analysis did not disclose any significant differences
between the serum concentrations of the two cohorts
[non-significant (n.s.)].

Effect of GA on adhesion molecules in MS

383© 2013 British Society for Immunology, Clinical and Experimental Immunology, 173: 381–389



Effects of GA on soluble AM in RRMS

Serum concentrations of the six soluble AM (sE-selectin,
sICAM-1, sICAM-3, sPECAM-1, sP-selectin and sVCAM-1)
were investigated longitudinally after 1·5, 6, 9 and 12
months of GA treatment and compared to baseline levels.
No treatment effect of GA on serum concentrations of the
six soluble AM was observed during the 12-month study
period (Table 1).

Discussion

The expression profile of AM in MS

The firm adhesion of encephalitogenic T cells and other
leucocyte subsets to CNS endothelial cells and ependymal
cells is critically dependent upon the binding of AM to their
respective receptors. A number of studies have linked the
increased migration rate of T cells isolated from MS
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patients to the higher surface expression of LFA-1 and
VLA-4 on lymphocytes [21–23]. Our data corroborate this
idea of linking pro-migratory immune cell activity with
surface-bound AM expression levels, which are increased in
treatment-naive patients with RRMS compared to healthy
controls. Increased surface levels of cell-bound AM were
identified on CD4+ T cells (LFA-1), CD8+ T cells (VLA-4),
NK cells (ICAM-3) and CD19+ B cells (ICAM-1, VLA-4).
Various immune cell subsets are present in MS lesions, with
CD4+ T cells predominating in acute lesions and CD8+ T
cells in chronic lesions [24]. Most recently, it was shown in
EAE that Th1 cells infiltrate the spinal cord preferentially
via a VLA-4-mediated mechanism, whereas entry of Th17
cells depends upon LFA-1 [25]. The data regarding
increased VLA-4 on CD8+ T cells in MS are in line with a
study by Jensen and co-workers [22]. While our data show
that LFA-1 is increased on CD4+ T cells and VLA-4 on CD8+

T cells in MS, other studies did not detect such a deregula-
tion [26,27]. Most recently, a reduction of NK cells was

shown to precede the development of relapses and brain
lesions [28]. Hamann and co-workers reported a decreased
frequency of this cell type in the CSF of MS patients and
speculate that the CSF is an intermediary compartment for
NK cell trafficking and differentiation before entering
the CNS parenchyma [14]. The increased expression of
ICAM-3 on the surface of NK cells in peripheral blood
found in this study may support this process. While B cells
constitute only a minor subset of immune cells in normal
CSF, the intrathecal accumulation of clonally expanded B
cells is a prevailing observation in MS [29,30]. Cells of the B
cell lineage within the CNS compartment and synthesis of
immunoglobulins have been linked to up-regulation of AM
in active MS plaques and increased levels of the chemokines
CXCL12 and CXCL13 in the CSF [31,32]. B cells were
shown to have a higher migratory capacity than T cells [33].
Memory B cells (CD27+), the predominant B cell subset in
CSF of MS patients, have a high expression of VLA-4 in
contrast to naive B cells (CD27–) [34,35]. An interesting
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Table 1. Effect of glatiramer acetate (GA) over a treatment period of 12 months on serum concentrations of six soluble adhesion molecules [AM)

(sE-selectin, soluble intracellular cell adhesion molecule (ICAM)-1, sICAM-3, soluble platelet endothelial cell adhesion molecule (PECAM)-1,

sP-selectin and soluble vascular cell adhesion molecule (VCAM)-1].

Baseline (n = 15) 1·5 months (n = 14) 6 months (n = 12) 9 months (n = 11) 12 months (n = 10)

sE-selectin 128·8 (54·8, 196·4) 86·5 (33·6, 172·4) 94·9 (32·8, 179·2) 86·2 (32·4, 172·4) 91·4 (39·4, 193·5)

sICAM-1 388·4 (542·2, 1833·0) 593·2 (328·0, 1288·0) 591·3 (307·1, 1295·0) 647·2 (279·1, 1155·0) 720·2 (305·5, 1131·0)

sICAM-3 73·7 (12·7, 130·9) 56·9 (18·1, 175·4) 46·1 (26·7, 224·5) 58·5 (23·2, 242·7) 50·8 (27·8, 158·9)

sPECAM-1 164·0 (115·7–215·1) 130·8 (41·3, 252·4) 133·2 (40·7, 264·6) 78·3 (45·7, 189·2) 102·5 (39, 208·5)

sP-selectin 651·6 (262·7, 111·0) 652·7 (311·1, 896·4) 719·9 (156·6, 917·6) 747·4 (211·5, 1320) 752·2 (250·9, 1120)

sVCAM-1 599·0 (473·1, 1707·0) 482·6 (284·0, 725·6) 429·5 (243·1, 654·2) 389·9 (249·7, 612·1) 486·8 (297·7, 840·5)

Median (range) in ng/ml.
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finding in our study was the increased expression of
ICAM-1 and VLA-4 on the surface of CD19+ B cells in
untreated RRMS patients. With regard to increased VLA-4
surface levels, we now confirm our previous observation in
a larger cohort [19]. This alteration in AM expression is of
functional relevance, as antibodies against ICAM-1 and
VLA-4 but not VCAM-1 were able to inhibit the migration
of B cells across human bronchial epithelial cells (HBEC)
[33].

In contrast to the analysis of cell-bound AM, the levels of
the six soluble AM in MS patients were in the same range as
in the controls. This is in line with the most recent studies
for serum or plasma levels of sVCAM-1 and sICAM-1 in
RRMS [36,37]. However, there are studies reporting a corre-
lation of these molecules with disease course and subtype,
notably in the examination of CSF [38]. The comparatively
low numbers of patients, the analysis of serum and the
remission phase on study entry may have impeded the
examination. Indeed, studying a larger number of patients
(RRMS n = 98), Kuenz and co-workers reported that
plasma concentrations of three soluble AM (sPECAM-1,
sP-selectin and sE-selectin) were highest in RRMS com-
pared to primary (n = 15) and secondary progressive MS
(n = 53), and increased even further during relapse [17].

The impact of GA on cell-bound and soluble AM in MS

Importantly, we demonstrate that treatment with GA results
in a decreased surface expression of the AM linked to the
pro-migratory activity of PBMCs. GA induced an overall
decline of ICAM-1 and ICAM-3 expression in the majority
of the immune cell subsets studied. This finding adds to
the current knowledge of phenomena concerning the
down-regulation of AM following therapy with immuno-
suppressive agents such as methylprednisolone and immu-
nomodulatory treatment with IFN-b [10,39]. However, the
time–course of changes with GA contrasts with observa-
tions concerning steroids, where a rapid change is observed.
The impact of GA on LFA-1 and VLA-4 levels was more
selective than for ICAMs. LFA-1 surface expression
decreased only on CD4+ T cells following GA treatment.
Significantly lower levels of VLA-4 were detected in the
course of GA treatment on NK cells, NK T cells and mono-
cytes. A more profound effect on VLA-4 was reported with
natalizumab therapy, and included the impact on all leuco-
cyte subsets referred to in this study [19,40]. This human-
ized antibody directed against the a4b1 integrin receptor
was shown to reduce lesion formation and disease activity
effectively. Natalizumab therapy, however, was also associ-
ated with lower LFA-1 levels on B cells and ICAM-2 levels
on B cells and monocytes, indicating secondary phenomena
associated with blocking of VLA-4 [41]. The ICAM-3
expression levels on CD19+ B cells in our study, regardless of
MS or HC, was at least twice as high as in other immune
cell subsets. We have reported previously the decrease of

ICAM-3 on T and B cells following therapy with IFN-b, and
now show a profound impact of GA on ICAM-3 expression
levels [39]. Several lines of evidence indicate that GA may
affect cellular B cell function. GA treatment was shown to
limit the expansion of myelin-reactive Th1 and Th17 cells
by interfering with B cells as antigen-presenting cells and
the promotion of regulatory B cells [7,42]. The generation
of GA-specific Th2 cells secreting anti-inflammatory
cytokines might limit the activation of B cells. The induc-
tion of regulatory B cells with provision of anti-
inflammatory cytokines and interference with their role as
antigen-presenting cells might participate in the altered AM
expression [43,44]. In contrast, the levels of the four soluble
AM in MS patients were in the same range compared to
controls and remained unchanged following treatment with
GA.

Some of the immunological effects induced by GA are
observed as early as 1·5 months after initiation of treatment
and decline after 6 months [45,46]. With observation of the
attenuation of surface levels mainly not before 6 months
from treatment initiation, the effect by GA seems to occur
indirectly and is likely to be a result of secondary regulatory
processes. This is also supported by studies from Kim and
co-workers, which disclosed that GA treatment suppresses
the inflammatory potential of T cells and subsequently
inflammatory responses at the BBB, but not directly their
migratory capacity [12]. Further evidence comes from the
persistence of the effects on cell-bound AM, as shown in
our study. There are reports that most of the immunologi-
cal effects, particularly the Th2 bias and GA-reactive T cells,
do not diminish over time [47]. Of note, there might be
interindividual differences related to the pathogenesis, as
seen with the effect of GA on the generation of GA-reactive
and Th2-polarized cells. Because of the limited number of
patients and lack of scheduled MRI scans, we did not take
the individual clinical and neuroradiological course into
account. By using the fluorescence activated cell sorter
(FACS) method we did not account for conformational
changes and clustering of AM. Further studies should con-
sider emerging adhesion molecules, including ninjurin-1,
activated leucocyte cell adhesion molecule (ALCAM,
CD166) and melanoma cell adhesion molecule (MCAM).

Conclusion

To our knowledge, this is the first study in MS to character-
ize a panel of cell-bound AM on different subsets of mono-
nuclear cells together with their soluble form and following
treatment with GA. We found evidence that GA treatment is
associated with modulation of the AM profile and thus the
pro-migratory AM pattern of different immune cell subsets.
While there is evidence that these phenomena are related to
secondary immune regulation processes, these effects may
contribute partially to the clinical and MRI effects seen in
patients with MS.
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